A New Application of the Tetramethylphospholyl (η^5 -C₄Me₄P) π -Ligand. Synthesis of η^5 -Tetramethylphospholyl Complexes of Yttrium and Lutetium

François Nief and François Mathey

Laboratoire de Chimie du Phosphore et des Métaux de Transition-DCPH, Ecole Polytechnique, 91128 Palaiseau Cedex, France

Reaction of lithium 2,3,4,5-tetramethylphospholide with MCl₃ gives η^5 -(C₄Me₄P)₂·MCl·LiCl·(solvent)₂ [solvent = Et₂O, 1,2-dimethoxyethane (DME), M = Y, Lu], which are the first reported π -heterocyclopentadienyl compounds of group 3 metals.

Since we have recently been successful in preparing η⁵-phospholyl complexes of Zr1 and Ti,2,3 we wanted to try to synthesise η^5 -phospholyl complexes of the early transition metals, those in group 3, because, to our knowledge, no π -heterocyclopentadienyl complexes of rare earths have ever been made. We selected the C₄Me₄P ligand because this ligand, which is peralkylated on the phospholyl ring, gave a much more tractable π -complex with Zr than the less substituted phospholyl ligand.⁴ Thus, when a pure solution of lithium 2,3,4,5-tetramethylphospholide (1) [obtained from 1,4-bis(2',3',4',5'-tetramethylphospholyl)butane]⁵ was treated with anhydrous YCl₃ or LuCl₃, bis(phospholyl) complexes were isolated after work-up. With yttrium, we got white crystals of composition (C₄Me₄P)₂YCl·LiCl·(DME)₂ (DME = 1,2-dimethoxyethane), (2), whereas with lutetium, white $(C_4Me_4P)_2LuCl\cdot LiCl\cdot (Et_2O)_2$, (3), was obtained.†

† Compound (2), n.m.r. (C_4D_8O) : 1H [200 MHz, p.p.m. from int. tetramethylsilane (TMS), J in Hz] 1.98 (s, CH_3 – C_3), 2.21 (m, $^3J_{PH}\approx 10$, $^3J_{PP}\approx 20$, CH_3 – C_2), 3.28 (s, CH_3 of DME), 3.44 (s, CH_2 of DME); 3 1P{iH} (32.4 MHz, H_3 PO₄ 84% ext.) 84.0 (d, $^1J_{PY}$ 6.4); 1 3C{iH} (50 MHz, int. TMS) 14.88 (s, CH_3 – C_3), 17.34 (ps. t. $^2J_{PC}\approx 31$, CH_3 – C_2), 58.80 (s, CH_3 of DME), 72.59 (s, CH_2 of DME), 134.97 (ps. t., $^2J_{PC}\approx 3.6$, C_3), 142.02 (dm, $^1J_{PC}\approx 46$, $^1J_{PY}\approx 1$, C_2); 7Li (31.1 MHz, satd. LiCl in C_4H_8O/C_4D_8O) –1 (s); 8 9Y (19.6 MHz, 3 M YCl₃ in D₂O) 38.4 (t, $^1J_{PY}$ 6.4).

Teta in D_2 C) 30.4 (c, J_{PC} 80.7): ${}^{1}H$ 1.23 (t, J_{PC} , C_{H_3} ether), 2.06 (s, C_{H_3} - C_3), 2.33 (m, ${}^{3}J_{PH} \approx 10$, C_{H_3} - C_2), 3.50 (q, J_{PC} , C_{H_2} ether); ${}^{31}P_{1}^{1}H$ 78.6; ${}^{13}C_{1}^{1}H$ 15.01 (s, C_{H_3} - C_3), 15.66 (s, C_{H_3} ether), 17.61 (ps.t., ${}^{2}J_{PC} \approx 32$, C_{H_3} - C_2), 66.28 (s, C_{H_2} ether), 134.34 (ps. t., ${}^{2}J_{PC} \approx 3$, C_3), 141.26 (m, ${}^{1}J_{PC} \approx 45.5$, C_2); 7Li –1 (s).

Scheme 1. Reagents and conditions: i, Li (excess), tetrahydrofuran (THF), room temp., 2 h; ii, YCl₃ powder, THF, room temp. 30 min, extract Et₂O, then DME, cryst. at -30 °C in DME (35%); iii, LuCl₃ powder, THF, room temp., 30 min, extract Et₂O (twice), cryst. at -30 °C in Et₂O (26%).

(3): M = Lu, Solv. = Et_2O

Evidence for the η^5 structure of the phospholyl ligand in (2) and (3) comes from i, the high characteristic value of the ${}^{1}J_{PC}$ coupling constant (\approx 45 Hz) which has the same value as in (η^5 -C₄Me₄P)₂TiCl₂³ and (η^5 -C₄Me₄P)₂ZrCl₂, 1 of which the X-ray crystal structure has been determined, and ii in (2) the low value of the ${}^{1}J_{PY}$ coupling constant (6.4 Hz), which was determined from the doublet observed in the ${}^{31}P$ n.m.r. spectrum, and confirmed by observation of a 1:2:1 triplet in the ${}^{89}Y$ n.m.r. spectrum; two recently prepared σ -bonded yttrium-phosphine complexes had ${}^{1}J_{PY} \approx 50$ Hz.^{6.7} Thus, a plausible structure for (2) and (3) is presented in Scheme 1.

As in the aforementioned Ti and Zr π -phospholyl complexes, the P atoms on the two phospholyl rings are magnetically nonequivalent and this gives rise to second-order effects on the ¹H and ¹³C n.m.r. signals of the C atom α to phosphorus and of the methyl group attached to it. From these signals, one can extract a value of $^2J_{PP'}$ of about 20 Hz, somewhat smaller than in $(\eta^5\text{-C}_4\text{Me}_2\text{H}_2\text{P})_2\text{TiCl}_2~(\approx 37\,\text{Hz}).^3$ The yttrium complex (2) could be recrystallised in ether without loss of co-ordinated DME. An attempt was made to

obtain a phospholyl complex with lanthanum by the same route; however, no reaction took place when a mixture of (1) and LaCl₃ was refluxed for 16 h.

We thank Dr. J.-C. Beloeil of ICSN-CNRS, Gif-sur-Yvette, France, for the measurement of the ⁸⁹Y spectra.

Received, 27th January 1989; Com. 9/00466A

References

- 1 F. Nief, F. Mathey, L. Ricard, and F. Robert, Organometallics, 1988, 7, 921.
- 2 F. Nief and F. Mathey, J. Chem. Soc., Chem. Commun., 1988, 770.
- 3 F. Nief, F. Mathey, and L. Ricard, Organometallics, in the press.
- 4 P. Meunier and B. Gautheron, J. Organomet. Chem., 1980, 193, C13.
- 5 C. Charrier and F. Mathey, Tetrahedron Lett., 1987, 25, 5025.
- 6 M. D. Fryzuk and T. S. Haddad, J. Am. Chem. Soc., 1988, 110, 8263.
- 7 P. B. Hitchcock, M. F. Lappert, and I. A. McKinnon, J. Chem. Soc., Chem. Commun, 1988, 1557.